Combinatorial study of colored Hurwitz polyzêtas
نویسندگان
چکیده
= ∑ n1>...>nr>0 q11 . . . qirnrn1 1 . . . n −sr r , with q a root of unit and i = (i1, . . . , ir) a composition. These sums converge when s1 > 1. To study simultaneously these families of polyzêtas, the colored Hurwitz polyzêtas, for a composition s = (s1, . . . , sr) and a tuple of complex numbers ξ = (ξ1, . . . , ξr) and a tuple of parameters in ]−∞; 1[, t = (t1, . . . , tr), are defined by [6]
منابع مشابه
Analytic and combinatoric aspects of Hurwitz polyzêtas
Résumé. Dans ce travail, un codage symbolique des séries génératrices de Dirichlet généralisées est obtenu par les techniques combinatoires des séries formelles en variables non-commutative. Il permet d’expliciter les séries génératrices de Dirichlet généralisées ’périodiques’ – donc notamment les polyzêtas colorés – comme combinaison linéaire de polyzêtas de Hurwitz. De plus, la version non co...
متن کاملVariance for the Number of Maxima in Hypercubes and Generalized Euler’s γ constants
In this work, we obtain some results à l’Abel dealing with noncommutative generating series of polylogarithms and multiple harmonic sums, by using techniques la Hopf. In particular, this enables to explicit generalized Euler constants associated to divergent polyzêtas. As application, we present a combinatorial approach of the variance for the number of maxima in hypercubes. This leads to an ex...
متن کاملSome Applications of Incidence Hopf Algebras to Formal Group Theory and Algebraic Topology
1. Introduction Hopf algebras are achieving prominence in combinatorics through the innuence of G.-C. Rota and his school, who developed the theory of incidence Hopf algebras (see 7], 15], 16]). The aim of this paper is to show that incidence Hopf algebras of partition lattices provide an eecient combinatorial framework for formal group theory and algebraic topology. We start by showing that th...
متن کاملMonotone Hurwitz Numbers and the Hciz Integral Ii
Motivated by results for the HCIZ integral in Part I of this paper, we study the structure of monotone Hurwitz numbers, which are a desymmetrized version of classical Hurwitz numbers. We prove a number of results for monotone Hurwitz numbers and their generating series that are striking analogues of known results for the classical Hurwtiz numbers. These include explicit formulas for monotone Hu...
متن کاملMaximal harmonic group actions on finite graphs
This paper studies groups of maximal size acting harmonically on a finite graph. Our main result states that these maximal graph groups are exactly the finite quotients of the modular group Γ = 〈 x, y | x = y = 1 〉 of size at least 6. This characterization may be viewed as a discrete analogue of the description of Hurwitz groups as finite quotients of the (2, 3, 7)-triangle group in the context...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 312 شماره
صفحات -
تاریخ انتشار 2012